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ABSTRACT

A numerical procedure is presented for analysis of backscatter spectra recorded by an atmospheric
Doppler lidar experiment. The recorded spectra are modelled by an analytic function of five
parameters. The procedure solves for the set of model parameters that yields the best least-squares
fit between the model and the data. The model is formulated to allow for Doppler shifted and
broadened scattering from both aerosols and from multiple molecular species, for a continuum
background, and for the effects of instrumental broadening. All five model parameters are fitted in
the signal domain. Three parameters are fitted by a direct analytic solution and two by numerical
searching. If required, one or more parameters may be held fixed at externally-supplied values,
while the remainder are fitted accordingly. The method's performance was examined by applying it
to numerically simulated test spectra, for several example lidar configurations. Some implications
of these results for the design of actual lidar experiments are discussed.

1 INTRODUCTION

Lidar systems operate by illuminating the atmosphere with short duration and highly directional
pulses of laser photons. Measuring properties of the backscattered photons as a function of time
allows measurement of atmospheric properties as a function of distance from the lidar. A high
resolution spectrometer in the receiver system can measure the wavelength spectra of the
backscattered photons. The atmospheric kinetic temperature and line-of-sight wind as a function of
range from the lidar can then be inferred from these spectra. The spectrometer of choice for this
application is a single or dual etalon Fabry-Perot spectrometer (FPS).

Analysis of a recorded spectrum proceeds by fitting an analytically-described model spectrum to it.
The model is formulated as a function of several parameters. These parameters correspond to the
desired geophysical quantities (wind and temperature) plus, usually, several other geophysically
useful quantities that will be estimated as a by-product.

Designing an effective analysis scheme is a three-part problem. First, the functional form of the
model spectrum must be specified. Second, we need a scalar expression defining the ‘goodness-of-
fit’ between the recorded spectrum and a particular instance of the model. Third, we need a scheme
for determining the set of parameters that yields the best possible fit between the model and the
recorded spectra, using this goodness estimator. For a single spectrum, the set of best-fit parameters
are the experimental estimators of the desired geophysical quantities.

2 THE MODEL SPECTRUM

Experimentally recorded spectra are, inevitably, instrumentally broadened by the finite spectral
bandwidths of both the transmitting laser and the receiving Fabry-Perot spectrometer. However,
there is no need for the analysis to represent these two broadening functions independently; a single



function can correctly account for the combined effects of both. Indeed, in a typical lidar
experiment, this combined effect is what is actually measured when directly viewing the transmit
laser. We refer to this as the ‘instrument function’ and denote it mathematically with the symbol 1.

It is assumed that actual lidar returns from the atmosphere will arise due to both Rayleigh scattering
from molecules and Mie scattering from aerosols. (Inelastic processes, such as Raman and
Brillouin scattering, will be ignored.) Because aerosol particle masses are large compared to the
atmosphere's mean molecular mass, the spectral width of aerosol backscatter is much smaller than
the spectral width of the Rayleigh component of the return signal. The Fabry-Perot instrument
function should be chosen to be comparable to the Rayleigh Doppler width. Thus, the aerosol
backscatter spectral width would appear negligible to the Fabry-Perot system, for all reasonable
values of atmospheric temperature. It is assumed that aerosols drift with the neutral wind, so that
the peak wavelength of the aerosol return spectrum will be the same as the peak wavelength of the
molecular Rayleigh return spectrum. Finally, we assume that there will be some background
continuum present in the recorded signal. These various components of the received signal must be
incorporated into the model spectrum.

A scanning FPS does not record continuous spectra. Rather, a set of discrete samples of the return
spectrum are obtained by stepping the FPS passband in wavelength, and measuring the received
intensity at each step. (Because the instrument scans its passband in wavelength over time, care
must be taken to avoid possible spectral distortions due to time variation of the return spectrum.
Possible distortions due to this effect are suppressed by co-adding a large number of short duration
spectral scans during each integration interval.) If each spectral scan contains N discrete samples,
then at the end of the scan we will have a set of values, {Y,} where n varies from 0 to N—1. The set
{Yn} is a discrete approximation to the spectrum of backscattered laser photons, modified by the
spectral response of the instrument.

From the discussion above, we will choose to model {Y} with a set of samples, {s,} of an analytic
function (of wavelength) of the form

S=1*B (1)
where

I = instrument function,
B = backscatter spectrum and
* denotes the convolution operator.

Rayleigh backscatter will occur from all atomic and molecular species in the atmosphere. The
mixing ratios of these species (and therefore their relative backscatter intensities) are well known
throughout the height range accessible to the lidar. Relative backscatter intensities due to the
molecular species can thus appear as constants within the model. The return spectrum due to each
molecular species will be modelled as a Gaussian function of wavelength. As each species has a
unique mass, the Doppler width of the backscatter spectrum due to each species will be different.
However, all species are assumed be at the same temperature — so only one free parameter is needed
in the model to describe these different widths. All scattering species, including the aerosol, can be
assumed to travel with the wind at the same velocity. Thus, again, we only need one model
parameter to describe the Doppler shift.



For the purpose of describing the backscatter spectrum, the aerosol could potentially be treated as
just another atmospheric species, albeit one of very high mass. However, we treat it separately from
the molecular species, for two reasons. First, the aerosol abundance is variable, yielding a relative
backscatter intensity that cannot be described effectively by an a-priori constant. Second, the
bandwidth of the aerosol return spectrum would (for a reasonably optimised experiment) be narrow
compared to our wavelength sampling interval. Thus, we cannot adequately represent the aerosol
return spectrum using the actual experiment's wavelength sampling interval. Rather, we must use a
model that only ever requires evaluation of the convolution of the aerosol spectrum with the
instrument function.

From these arguments, we can rewrite equation 1 as the instrument function convolved with a sum

of three separately treated contributions: a continuum background, aerosol Mie scattering, and
Rayleigh scattering summed over all contributing molecular species. We write this as

2
s(A)= Y a;Sj (), (2)
=0

where the aj are the backscatter intensities of each of the 3 contributing terms and

So(A) = 1 represents the continuum component,

S1(A) I(A) * d(A—Ap); (O denotes the Dirac delta function)

= I(A—\p), the aerosol term,

K-1 2
So(A) I(L)* Z qk exp— (f:v A ) , the total Rayleigh contribution arising from

0
k=0 k(T)
K different molecular species,

wk(T) = 1is the width in wavelength units of the backscatter from the kth species for a
temperature of T,

Ao = the Doppler shifted peak wavelength of the return signal.

We refer to the three functions Sg(A), S1(A) and Sy(A) as the ‘basis functions’ for our model. In the
expression for Sy we have used qi to represent the relative contribution to the Rayleigh backscatter
from the kth molecular species. Values for qx are supplied to the analysis as pre-determined
constants, with the property that

K-1
dak=1. 3)
k=0

Generally, the model contains five free parameters that we need to fit, i.e. ag, aj, ap, Ag and T.
However, potentially, values for some of these parameters could be supplied as constants estimated
by other means. For example, above the aerosol layer, ag, aj and T can be estimated directly from
the height profile of the spectrally-integrated return signal. Thus, the analysis program is
formulated to allow any combination of parameters to remain fixed at their externally-supplied
starting values.



3 DEFINING THE BEST FIT

We use the conventional y2 parameter to describe the degree to which the model spectrum departs
from the recorded spectrum, i.e.

Zﬁ—y“ )

n

where Gi is the variance of the nth element of the observed spectrum, y,. Providing that our model
accurately describes the functional form of the recorded spectrum, then the best possible choice of
model parameters yields the minimum 2, with an expected value of N minus the number of free
parameters in the model. If we denote the set of model parameters as {p;} then the best choice for
{pj} occurs when

()

for all j. This condition provides an analytic expression that could potentially be used to calculate
the optimum {p;}. However, using the model function described by equation 2, it is not possible to
solve equation 5 for all {pj}.

4 STRATEGIES FOR FINDING OPTIMUM VALUES FOR THE MODEL
PARAMETERS

In designing an analysis scheme, it is important to distinguish between the criterion used to define
the optimum model parameters and the procedure used to find parameters that satisfy this criterion.
So far we have described the criterion, but not the procedure.

If this is not feasible to solve equation 5, x2 can be evaluated numerically for various trial (p;).and
the results used to drive a search procedure to locate the ¥2 minimum. The latter approach has
usually been adopted by most Fabry-Perot spectral analysis algorithms, because it is usually not
possible to solve the peak position and width parameters analytically.

The simplest search strategy, conventionally described as a ‘grid search’, proceeds by minimising 2
with regard to each model parameter in turn, while all other parameters are held fixed. Optimisation
over the complete set of parameters is repeated cyclically until satisfactory convergence is obtained.
This algorithm is very stable, although it can converge slowly if x2 variations with respect to two or
more of the parameters are not independent. However, the grid search will eventually be successful
even in such cases, indicating that repeated independent optimisation of each parameter is viable as
a generalised strategy.

Another consequence of this is that is does not matter sow 2 is minimised for a given parameter,
nor whether the same technique is used for each one. This conclusion leads to the hybrid approach
adopted for the lidar analysis problem — a grid search in which, at each iteration, some of the
parameters are computed analytically and some are obtained by searching.

5 ANALYTICALLY CALCULATING THE INTENSITIES

We can solve equation 5 analytically for the three intensities appearing in our model, i.e. ag, aj, and
ap. Several algorithms exist for this. The method presented below (known as ‘directly solving the



normal equations’) is the most straightforward to describe, and is presented to illustrate that an
analytic solution does indeed exist. However, this method can be unstable if the basis {s,} are not
clearly distinguished by the data. (By this we mean that a region exists around the global 2
minimum within which the values of two or more coefficients of the basis functions can be changed
in a complementary fashion, so the resulting 2 perturbation is not statistically significant.) In the
case of our model function for lidar returns, this situation could arise if the acrosol and molecular
return spectra are not distinguishable within the noise on the recorded spectrum. The problem
manifests itself during numerical inversion of the curvature matrix — which can become near
singular. A better (but more complex) algorithm in such cases is singular value decomposition.

5.1 Direct solution of the normal equations

Substituting equation 2 into equation 4 gives
2
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where the notation (S;), refers to the jth basis function evaluated at the nth discrete wavelength.
Equation 5 thus becomes
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Equation 7 describes three simultaneous linear equations in three unknowns agp, aj, and ap.
Explicitly,
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which can be expressed as
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for1=0, 1, 2. Equation 8 can be expressed even more compactly in matrix form as

b = Aa, 9)



where b is a row vector given by

N-1 1 N-1 1 N-1 1
b= Z_Z(SO)nYnﬂ Z_Z(Sl)nYn’ Z_Z(SZ)HYII (10)
n=0On n=0 On n=0%n

a is a column vector given by

a0
a= al

as

and A is a 3 x 3 square matrix defined by

N-1
Ajj= 2 LZ(Si)n(Sj)n' (11)

n=0%n

A is conventionally referred to as the ‘curvature matrix’.

Multiplying both sides of equation 9 by Al yields an analytic expression for the model's intensity
coefficients, a,

a=DbAl (12)

Although this process may appear complex, it is numerically very simple to evaluate a. The
analysis program merely constructs the row vector b and the curvature matrix A using the
summations defined by expressions 10 and 11 respectively. A standard matrix inversion routine is
then called to evaluate Al the result is inserted into the very simple calculation of a defined by
equation 12.

There are a couple of points to note. First, these calculations must be done in the signal domain (we
have not derived expressions for optimising equation 6 analytically with respect to a in the
transform domain). Second, values for the parameters T and A are needed to evaluate the functions
S1 and Sj. This means that initial estimates for T and Ao must be generated before the first attempt
to solve for a. On each subsequent iteration, the latest estimates of T and Ag are used. Third, as
mentioned above, there may be times when one or more of the agp, a; and ap will be determined
outside of this analysis, and simply supplied as constants. Thus, a practical program will need to
implement these possibilities by allowing the matrix expressions to operate for any of the cases of 3,
2 or 1 unknown(s).

5.2 Singular value decomposition

The singular value decomposition (SVD) algorithm has been described by Press et al. (1986);
repetition of the description is beyond the scope of this work. SVD also provides an analytic
solution for the set of coefficients {aj} but does so in a fashion that avoids directly inverting the
curvature matrix A which, potentially, could be near-singular for noisy spectra. Note that SVD is
not applicable for finding coefficients that appear non-linearly within our model function. Thus,
SVD cannot be used to evaluate T and A.

The lidar analysis was implemented using the programming language ‘IDL’, which includes a pre-
written SVD subroutine. This implementation can return not only estimates of the coefficients {aj}



but also estimates of their variances. (Variances of the coefficients are also available from the
normal equations, although discussion of this has been omitted above.) Note, however, that in this
application there is an additional contribution to the variances of parameters {aj} due to the
variances of T and A¢. Analytic solutions for the linear parameters offer no way to allow for this, so
it is not appropriate to use variances returned by them. Rather, we must separately compute the
parameter variances simultaneously for all parameters, as is described later.

SVD is known to be significantly slower than solving the normal equations. However, tests on
numerically synthesised data have shown that a PC using a 233 MHz Pentium MMX processor can
run the complete analysis described here on one 128-channel spectrum in an average of around 0.45
seconds. This is considered easily fast enough, even for near-real-time data processing.

6 ESTIMATING TEMPERATURE AND DOPPLER SHIFT
6.1 The Levenberg-Marquardt search

Because we cannot solve equation 5 analytically for T and Ag, these parameters must be determined
by searching. There are many possible strategies for doing this. One possibility would be to use a
grid search in the Fourier transform domain, as is done by many existing routines used to analyse
Fabry-Perot spectra of the airglow and aurora. This method is attractive because the number of
Fourier coefficients needed to describe the data and the model function is typically a factor of ten
smaller than the number of observation points in the signal domain. However, this advantage is
partially lost because the grid search is very inefficient (it makes no use of the gradient of the fitting
function).

The approach described below operates in the signal domain and attempts to use as much analytic
information as possible. Although we cannot solve equation 5 analytically, we can compute analytic
expressions for the partial derivatives of %2 with respect to T and Ag. These expressions will be
used to implement the Levenberg-Marquardt (LM) algorithm to find simultaneous solutions to
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The LM method is particularly elegant in that it implements a smoothly-varying combination of two
search strategies. When the initial guess for the model parameters is a long way from optimum, the
LM search uses an inefficient but numerically stable steepest-descent search. As the parameter
estimates approach their solution, the search strategy changes smoothly, placing progressively more
weight upon an analytic solution of a quadratic-expansion of 2. The two strategies differ in the
method used to generate each successive new estimate for the model parameters.

The following description of the LM procedure closely follows that presented by Press et al. (1986).
Let us denote the set of J parameters that we wish to optimise as {p;j} to distinguish them from the
set {aj} that we solved above using direct analytic methods. We can also regard the set {p;j} as a
vector, in which case we denote it simply as p. Search procedures operate by generating a sequence
of estimates for p. The steepest descent method generates a new estimate for p by perturbing the
current one according to

Pm+1 = Pm —YVX2(Pm)s (13)



where 7 is some coefficient chosen to be small enough that a single iteration does not overshoot the
x2 minimum. Conversely, the quadratic expansion of 2 method generates its sequence of estimates
using a relation of the form

Pm+1 = Pm tDI[- VY2(pm)], (14)

where D is a JxJ matrix describing the second cross-partial derivatives of ¥2 with respect to the
parameters p.

Consider our expression for %2, equation 4. Using the chain rule, the gradient of (2 with respect to
p can be written in component form as

2 N—I(Y _s )as
—&__ oy 0 B/ n (15)
dp E‘O (5121 dp;

from which we define
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Taking a second partial derivative gives
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Press et al. (1986) explain that it is conventional to drop the second-order partial derivatives from
the above expression — i.e. the right-hand term of the square brackets inside the summation. This is
because near the solution (Y,—sy) should be small if our model is well chosen. Further, retaining
the higher derivatives is often numerically destabilising in practice. From this we define

&1 asp0s, 19
o=, 5 — — AT (18)
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Now both of equations 13 and 14 can be expressed in a general form as

Pm+1 = Pm —0, (19)

where 0 is the (vector) increment added to py, in order to generate pm+1. Thus, for the steepest
descent method we have

81 =7B1. (20)

It can be shown that oo = /2D in equation 14, so that for the quadratic expansion method
J
D0 =By (21)
j=1

The Levenberg-Marquardt search combines these expressions by taking two further steps. First,
based on dimensional arguments, the 'y is chosen to be a vector whose Ith element is given by

1



so that

1
o =—0[. 22
= e B (22)

In the above equations, A is a non-dimensional parameter whose value we can freely vary depending
on the search behaviour that we desire. The second step is to note that both equations 22 and 21 can
be written as a single expression

J
> af; 8 =By, 23)
=1

where
of = oy (1+2) (24)

For very large values of A, o is dominated by its diagonal elements so that equation 23 approaches
20. Conversely, as A approaches zero, equation 23 approaches equation 21. Thus, simply by
varying A, we can smoothly vary the strategy for generating pm+1 between a steepest descent
method and a quadratic expansion of 42 method. The former is most useful a long way from the y2
minimum, whereas the latter works best close to the minimum.

Press et al. (1986) describe the procedure for actually implementing an LM search as follows:

1. Generate an initial estimate of the parameters, p, and evaluate x2(p).
Pick a starting value for A, with 0.001 being recommended.
Evaluate the vector B and the matrix o’.

Solve equation 23 for & by inverting of’.

If x2(p — 8) >x2(p) increase A by a factor of 10 and go back to (3) .

S ok w

If %2(p — &) <x2(p) decrease A by a factor of 10 and replace p with p — 8, and go back to (3) if
the stopping criterion has not been satisfied.

7. Terminate the iteration when differences between successive 2 estimates are too small to be
statistically meaningful (i.e. <<l).

8. Set A=0 and evaluate the covariance matrix of standard errors, C = all.
6.2 Application to the lidar analysis

The above description has described the Levenberg-Marquardt search in general terms. For the lidar
problem, there are only two parameters that we need to find by searching, i.e. T and Ag Thus, B is a
two-element vector and o is a 2x2 matrix. Because these each have a small number of elements,
solving equation 23 is not computationally expensive.

Application of the LM method to any specific problem, including that of the lidar analysis, requires
deriving expressions for
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ap j
so that B and o can be evaluated. Now equations 16 and 18 indicate that we do not need to
evaluate

%’
apj

directly; we can adequately approximate these terms provided we know the derivatives of the basis
functions,

I
ap;

These latter expressions are more simply obtained, as is done below.
6.3 The partial derivative with respect to Doppler shift

Expanding equation 2 to explicitly show all its terms yields
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from which we obtain the result that
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Notice that the derivative is explicitly evaluated in the second (molecular scattering) term of
equation 25 above, but not in the first (aerosol scattering) term. For the second term, we have
evaluated the derivative using the property that

a%[l(x)*f(x,u)]: I(k)*L)—au f(x,u)J. (26)

Now because I(A — Ag) = I(A)*6(A — Ag), we can indeed rewrite

0
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in the same form as the left-hand side of equation 26 above. However, because we can neither
represent (much less differentiate) a discretely-sampled delta function, we cannot use the right-hand

side of equation 26 to evaluate the acrosol derivative in practice. Further, because I(A) is an
experimentally determined function (i.e. it is not analytically described), we can never express

d
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analytically — we must compute it numerically. The computer program actually does this by
applying the Fourier derivative theorem to the discrete Fourier transform {I,}. ({I,} is the discrete
representation of I(A)).

6.4 The partial derivative with respect to temperature

As before, we expand equation 1 to show all its terms. However, this time we must explicitly
include the expression that relates !/e Doppler half width of the molecular backscatter (in
measurement units) to kinetic temperature, i.e.

w(T)=&xo,/§4—1j,

where  the coefficient needed to convert the wavelength units (of Ag) to ‘channels’ in our discretely
sampled spectra. Our expression thus becomes
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Differentiating with respect to T gives
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Equation 27 completes the information needed to calculate the vector B and the o used in the LM
search.

7 THE COMPLETE LIDAR ANALYSIS SCHEME

We now consider how the methods above can be combined to form a complete lidar analysis
scheme. We have constructed the analysis in two parts: one to solve analytically for parameters
appearing linearly in our model sy, and one to solve for the non-linear parameters. We perform
these two parts iteractively. The procedure is:

1. Generate initial guesses for T and Ag.

2. Generate new estimates for ag, a; and a3 using the SVD method and the T and A estimates.

3. Generate new estimates for T and A( using an LM search and the current ag, aj and a3 estimates.

o

Evaluate 2 using the updated parameters.

e

Go back to (2) until successive X2 estimates are not distinguishable with statistical significance.



One slight complication is that the LM method itself is an iterative procedure. Thus, the analysis
could either leave the linear parameters constant throughout each complete LM search or,
alternatively, it could re-calculate the linear parameters between every step in the LM search. In
practice, the former approach is faster.

8 ESTIMATING THE PARAMETER VARIANCES

Both the SVD and the LM portions of the complete solution can return estimates of the variances of
the parameters. However, while it is simple to independently compute values of a subset of the
model parameters (given values for each of the remaining parameters), it is not simple to
independently compute the variances of the subset (even given values and variances of the
remaining parameters). Fortunately, standard non-linear least-squares fitting techniques (e.g.
Bevington, 1969; Press et al. 1986) provide a generalised method for computing the variances of all
the model parameters simultaneously, as follows.

Let us denote the complete set of L variable parameters in our model as {vj} where 1 varies from 0
to L-1. (Using the notation of the previous sections, {v} would be formed from the union of the
sets {a} and {p} and L =5 if we fit all parameters.) We construct a complete LxL curvature matrix,
¢, encompassing all parameters using

N-1
1 9s, 0
C= D, 5 n (28)
n=0 Gn aVJ aVk

The parameter variances are then obtained directly from the diagonal elements ¢l. That is, if we
write € = ¢l , then

2
o”(v) =gy (29)
9 PERFORMANCE EVALUATION
9.1 Simulating spectra

To examine the performance of the method, we apply it to simulated Fabry-Perot spectra, generated
numerically from precisely known values of the five model parameters. By applying the method to
large sets of such spectra, we can examine the speed and stability of convergence, as well as the
statistical distributions of the fitted parameters. In particular, we need to know if the means of the
parameter estimates match the values used to generate the spectra. Further, we will compute the
variances of the distributions of parameter estimates over the whole set of simulated spectra, and see
if these are consistent with the parameter variances returned by the fit routine after fitting an
individual spectrum. The basic characteristics used to simulate the experiment were:

Laser wavelength 532 nm
Etalon gap 15.8 mm
FPS instrumental finesse 19.7

Number of spectral channels 128




Doppler shift by one channel ~40 ms-1
Atmospheric composition 75% N», 25% O
Doppler width 250 Kelvins
Doppler shift 20 channels
Molecular peak height 50 counts
Aerosol peak height 15 counts
Spectral background 45 counts/channel

In simulating the instrument profile, an attempt was made to include several of the ‘less desirable’
characteristics that frequently occur in real instruments. Thus, the simulated instrument profile was
generated by summing 3 Gaussian functions, and then convolving these with an asymmetric (right-
angle triangle) shaped function. For the Gaussians, the dominant one was chosen to be very narrow
(corresponding to an equivalent Np temperature of 8 Kelvins). The remaining two Gaussians
heights were only 30% and 10% that of the main one, but their spectral widths were 5 and 10 times
greater, respectively. The full-width at half height (FWHH) of the triangle function was set to be
twice that of the main Gaussian's FWHH. The instrument function was deliberately displaced
slightly off-center of the spectrum; its centroid occurs at 40% of the scan range. A noise-free
version of this instrument function was used to generate the simulated sky return spectra. However,
the version supplied to the fitting routine had a small noise term added. This was to simulate the
real experiment, in which the instrument function can only be obtained by measurement — a process
that inevitably introduces noise. Figure 1 illustrates the simulated instrument profile supplied to the
program, including measurement noise.

9.2 Some example fits

We now present three examples of the results of fitting to individual spectra. Figure 2 presents an
example of a simulated sky return spectrum, with the fitted function superimposed, after 0, 3, and
12 iterations of the procedure. To test the fitting routine strenuously, the initial estimates of peak
position and temperature were allowed to vary randomly over a much wider range than would occur
in practice. In Figure 2 the initial peak position estimate was clearly to high. Nevertheless,
convergence was good, as is illustrated by Figure 3, which depicts the history of the estimates for
each parameter after each iteration. Indeed, tests have shown that the procedure can converge from
initial guesses very much worse than shown here. The only (minor) difficulty occurs if the initial
temperature is absurdly low and the initial position is several peak widths away from its correct
location. In this case there is little overlap between peaks in the data and the model, yielding a poor
indication of which way the position and temperature parameters need adjusting. However, the
program can test for this condition, and can respond effectively.

The program actually terminated after a total of 21 iterations, when the reduced 2 value was 1.20.
(21 iterations is more than usual; the average number of iterations at termination is only 13.)
Included among the diagnostic information returned by the program is the sky spectrum signal/noise
ratio. This is computed from the power spectrum of the sky profile, and is defined as the power
spectrum's fundamental component divided by the average value of it's high-frequency, noise-



dominated components. The signal/noise ratio was 748 for the sky spectrum shown in Figure 2a.
The final parameter estimates and their corresponding uncertainties were:

Value Uncertainty
Temperature 243.6 Kelvins 26.3 Kelvins
Doppler shift 19.9 channels 0.24 channels, or 9.6 ms-1
Molecular 48.9 counts 2.9 counts
Aerosol 16.3 counts 4.1 counts
Background 46.4 counts/channel 0.58 counts/channel

The sequence of %2 values after each iteration is shown in Figure 4.

Figure 5 shows an example of the fit results for a spectrum with a low signal/ratio, i.e. only 91. The
program terminated after a total of 13 iterations, when the reduced %2 value was 0.84. The final
parameter estimates and their corresponding uncertainties were:

Value Uncertainty
Temperature 272.0 Kelvins 90.0 Kelvins
Doppler shift 19.7 channels 0.70 channels, or 28 ms-1
Molecular 48.3 counts 8.6 counts
Aerosol 21.4 counts 12.4 counts
Background 43.7 counts/channel 1.8 counts/channel

Figure 6 shows an example of the fit results for a spectrum with a high signal/ratio, i.e. 2 194. The
program terminated after a total of 22 iterations, when the reduced 2 value was 0.91. The final
parameter estimates and their corresponding uncertainties were:

Value Uncertainty
Temperature 257.3 Kelvins 16.4 Kelvins
Doppler shift 19.98 channels 0.14 channels, or 5.6 ms-1
Molecular 48.3 counts 1.7 counts
Aerosol 16.3 counts 2.4 counts
Background 45.5 counts/channel 0.34 counts/channel

9.3 Distributions of the fit results

Having seen how the method behaves in a few selected examples, we now consider the statistical
distributions of fit results for a large (1500 element) set of simulated spectra. The amplitude of the



noise term added to each spectrum was varied randomly, so that the set of spectra spanned a range
of signal/noise ratios. Figure 7 presents scatter diagrams of the values returned for each of the five
model parameters, plotted against signal/noise ratio. It is apparent that the parameter estimates
cluster about their correct values for all five parameters and at all noise levels. As expected, the
parameter estimates become more widely scattered (i.e., the parameter variances increase) at higher
noise levels. While generating the results in Figure 7, the method took an average 13 iterations and
0.45 seconds of computer time per spectrum. Thus, it took around 12 minutes to process all 1 500
spectra.

Figure 8 presents scatter diagrams of the parameter standard deviations (i.e. \/(? returned by the fit,
plotted against signal/noise ratio. To test if the variances calculated in equation 29 appear
reasonable, we compared these values to the distributions of parameter estimates within 7 subsets
the entire 1 500 spectra. That is, we divided the spectra in 7 subsets, spanning 7 contiguous
intervals of signal/noise ratio. Within each of these subsets we computed the variances of the
parameter estimates. The square root of these values represents the actual standard deviations that
were obtained within that subset; in Figure 8 these values are superimposed as heavy black
diamonds onto the scatter plots of individual standard deviation estimates. The variances (and
hence standard deviations) returned from fitting an individual spectrum generally appear to be
consistent with actual variances over a large set of trials. There is perhaps a suggestion that the
uncertainties in Doppler shift and aerosol scattering intensity may be slightly underestimated for
signal/noise ratios below ~100. However, this is an inexact test of the routine, and the agreements
are close. Further, spectra with signal/noise ratios this low are unlikely to be of much use anyway.
Overall, refinement of the error estimation method does not seem justified for now.

9.4 The effects of fitting fewer parameters

As mentioned earlier, the analysis program has been written to allow one or more of the model
parameters to be held ‘frozen’ at some externally-supplied initial value. This facility was included
as it is anticipated that several of the parameters could potentially be estimated independently by
other means, for a typical lidar experiment. It is instructive to see how inclusion of such a-priori
knowledge can improve the fit results for the remaining parameters. Figure 9 shows the parameter
standard deviations for a second set of 1 500 spectra, statistically equivalent to those used to
generate Figure 8. However, in this case, the fits were constrained to only search for temperature,
Doppler shift, and molecular backscatter intensity. The aerosol and background intensities were
held fixed, at their correct values.

The uncertainties in temperature and molecular scattering intensity were dramatically reduced by
applying a-priori knowledge of the background and aerosol intensities. A discernible, but less
dramatic, improvement was also seen for the Doppler shift parameter. The computational load was
also reduced. On average, the routine converged after only nine iterations and took 0.32 seconds per
spectrum.

9.5 The effects reduced instrumental finesse

The simulations presented so far have used an instrument function finesse ~20, which is toward the
upper limit of what is likely to be achievable for a practical FPS. We now consider the results of a
simulation using a broader instrument function, with a finesse of ~9, as depicted in Figure 10. This
instrument function was generated using the same procedure as previously, except that the main
Gaussian's equivalent N» temperature was specified to be 24 Kelvins (rather than 8 Kelvins). The



widths of the other contributing functions were scaled relative to that of the main Gaussian, so all
component functions were similarly broadened, yielding a final instrument function width roughly
twice that used previously. (Note, however, that at 14.3 channels, the FWHM of this function is
still significantly less that the FWHM of 22.9 channels for scattering from N; at 250 Kelvins.)

Figure 11 shows the parameter standard deviations for a another set of 1 500 spectra, in this case
generated using the broadened instrument function depicted in Figure 10. As can be seen, the
parameters worst effected were molecular and aerosol scattering intensities, followed temperature.
Some degradations also occurred for the background intensity and Doppler shift, but these were less
significant. It would seem that a high finesse instrument is most critical for distinguishing between
aerosol and molecular scattering, and for measuring temperature. If wind is the only quantity of
interest, there is less incentive to achieve high finesse in the Fabry-Perot system.

10 CONCLUSIONS

A new method has been presented for analysing Doppler spectra from an atmospheric lidar
experiment. The method allows for the effects of both aerosol and multiple-species molecular
scattering, a continuum background, and instrumental broadening of the recorded spectra. The
analysis proceeds by least-squares fitting a five-parameter model function to the recorded spectra.
Values for three of these parameters are computed analytically, and two by numerical searching.
One or more parameters can be held fixed at externally-supplied values, while the remainder are
computed accordingly. Applying the method to simulated spectra indicated that it converges stably
over a wide range of signal/ratios, and even given very poor initial guesses for the two search
parameters. Parameter estimates from sets of 1 500 trial spectra indicated that the means of the
parameter estimates closely matched the values used to generate the model spectra. Further, the
variances of the sets of results were, in most cases, consistent with the variances returned by
individual fits. There was perhaps a suggestion that the variances in Doppler shift and aerosol
scattering intensity were slightly underestimated for signal/noise ratios ~100. However, the
discrepancy did not appear large enough to warrant further refinement of the error estimation for
now.

The simulations indicated that significant improvement in the accuracy of estimation of some
parameters can be obtained by minimising the number of parameters solved simultaneously, and by
making the instrument function as narrow as possible.

Finally, simulations like these have proved useful not just for testing the analysis procedure. They
have also yielded useful guidance for the design of the lidar experiment itself. For example, it is
apparent that there is less incentive to achieve a narrow instrument function if Doppler shift is the
only quantity needed with high precision.
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Figure 9: As before, this figure shows scatter plots of parameter standard
deviations, both estimated for individual spectra snd calculated from the
distributions. In this case, only the top three parameters were fitted. The
bottom two were held fixed at their correct values throughout the fit.
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Figure 10: This figure depicts an instrument profile approximately twice
the width of that used previously. Simulations using this profile were run
to examine how reduced instrument finesse would degrade the recoyvery of
model parameters.
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